Glen Knight

NYC Based IT Professional

New – Process PDFs, Word Documents, and Images with Amazon Comprehend for IDP

Today we are announcing a new Amazon Comprehend feature for intelligent document processing (IDP). This feature allows you to classify and extract entities from PDF documents, Microsoft Word files, and images directly from Amazon Comprehend without you needing to extract the text first. Many customers need to process documents that have a semi-structured format, like […]

0 Comments

Read More

Introducing Amazon GameLift Anywhere – Run Your Game Servers on Your Own Infrastructure

In 2016, we launched Amazon GameLift, a dedicated hosting solution that securely deploys and automatically scales fleets of session-based multiplayer game servers to meet worldwide player demand. With Amazon GameLift, you can create and upload a game server build once, replicate, and then deploy across multiple AWS Regions and AWS Local Zones to reach your […]

0 Comments

Read More

Announcing Amazon CodeCatalyst (preview), a Unified Software Development Service

Today, we announced the preview release of Amazon CodeCatalyst. A unified software development and delivery service, Amazon CodeCatalyst enables software development teams to quickly and easily plan, develop, collaborate on, build, and deliver applications on AWS, reducing friction throughout the development lifecycle. In my time as a developer the biggest excitement—besides shipping software to users—was […]

0 Comments

Read More

New — Create Point-to-Point Integrations Between Event Producers and Consumers with Amazon EventBridge Pipes

It is increasingly common to use multiple cloud services as building blocks to assemble a modern event-driven application. Using purpose-built services to accomplish a particular task ensures developers get the best capabilities for their use case. However, communication between services can be difficult if they use different technologies to communicate, meaning that you need to […]

0 Comments

Read More

Step Functions Distributed Map – A Serverless Solution for Large-Scale Parallel Data Processing

I am excited to announce the availability of a distributed map for AWS Step Functions. This flow extends support for orchestrating large-scale parallel workloads such as the on-demand processing of semi-structured data. Step Function’s map state executes the same processing steps for multiple entries in a dataset. The existing map state is limited to 40 […]

0 Comments

Read More

AWS Machine Learning University New Educator Enablement Program to Build Diverse Talent for ML/AI Jobs

AWS Machine Learning University is now providing a free educator enablement program. This program provides faculty at community colleges, minority-serving institutions (MSIs), and historically Black colleges and universities (HBCUs) with the skills and resources to teach data analytics, artificial intelligence (AI), and machine learning (ML) concepts to build a diverse pipeline for in-demand jobs of […]

0 Comments

Read More

New for Amazon Redshift – Simplify Data Ingestion and Make Your Data Warehouse More Secure and Reliable

When we talk with customers, we hear that they want to be able to harness insights from data in order to make timely, impactful, and actionable business decisions. A common pattern with data-driven organizations is that they have many different data sources they need to ingest into their analytics systems. This requires them to build […]

0 Comments

Read More

New — Introducing Support for Real-Time and Batch Inference in Amazon SageMaker Data Wrangler

To build machine learning models, machine learning engineers need to develop a data transformation pipeline to prepare the data. The process of designing this pipeline is time-consuming and requires a cross-team collaboration between machine learning engineers, data engineers, and data scientists to implement the data preparation pipeline into a production environment. The main objective of […]

0 Comments

Read More

New — Amazon SageMaker Data Wrangler Supports SaaS Applications as Data Sources

Data fuels machine learning. In machine learning, data preparation is the process of transforming raw data into a format that is suitable for further processing and analysis. The common process for data preparation starts with collecting data, then cleaning it, labeling it, and finally validating and visualizing it. Getting the data right with high quality […]

0 Comments

Read More

Announcing Additional Data Connectors for Amazon AppFlow

Gathering insights from data is a more effective process if that data isn’t fragmented across multiple systems and data stores, whether on premises or in the cloud. Amazon AppFlow provides bidirectional data integration between on-premises systems and applications, SaaS applications, and AWS services. It helps customers break down data silos using a low- or no-code, […]

0 Comments

Read More